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Abstract:  Asymptotically exact and nonlocal third order nonlinear evolution equations are derived for two counter 

propagating surface capillary gravity wave packets in deep water in the presence of wind flowing over water. 

From these evolution equations stability analysis is made for a uniform standing surface capillary gravity wave 

trains for longitudinal perturbation. Instability condition is obtained and graphs are plotted for maximum growth 

rate of instability and for wave number at marginal stability against wave steepness for some different values of 

dimensionless wind velocity. 
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1.    INTRODUCTION 

One approach to studying the stability of finite amplitude surface waves in deep water is through the application of the 

lowest order nonlinear evolution equation, which is the nonlinear Schr¨odinger equation.Zakharov’s [10] study is along 

this line, allowing for finite amplitude wave trains to be subjected to modulational perturbations in two horizontal 

directions both along and perpendicular to the direction of the wave train. Benney and Newell [1] and Hasimoto and Onto 

[8] derived a single equation describing long-time evolution of the envelope of one dimensional surface-gravity wave 

packet on the surface of water of finite depth. Devey and Stewartson [3] extended this for a two dimensional wave packet 

and showed that the nonlinear evolution equation in this case is governed by two coupled equations. These equations 

including the effect of capillarity were derived by Djordjevic and Redekopp [5] which give the nonlinear evolution 

equation of a two dimensional capillary gravity wave packet. The corresponding equation for a one dimensional wave 

packet was obtained by Kawahara [7].  

The third order nonlinear evolution equations have been derived by Pierce and Knobloch [9] for two counterpropagating 

capillary gravity wave packets on the surface of water of finite depth. The resulting equations are asymptotically exact 

and nonlocal and generalize the equations derived by Djordjevic and Redekopp [5] for counterpropagating waves. In the 

present paper third order nonlinear evolution equations are derived for two counterpropagating capillary gravity wave 

packets in the surface water of infinite depth in the presence of wind flowing over water. So this paper is an extension of 

the evolution equations derived by Pierce and Knobloch [9] for an infinite depth water and in the presence of wind 

flowing over water. These evolution equations remain valid when the dimensionless wind velocity is less than a critical 

velocity. This critical velocity is defined by the fact that a wave becomes linearly unstable if the wind velocity exceeds 

this critical velocity. From these evolution equations stability analysis is investigated for a uniform standing surface 

capillary gravity wave trains with respect to longitudinal perturbation. The expressions for the maximum growth rate of 

instability and the wave number at marginal stability are derived. Graphs are plotted for maximum growth rate of 

instability and for wave number at marginal stability against wave steepness for some different values of dimensionless 



International Journal of Mathematics and Physical Sciences Research   ISSN 2348-5736 (Online) 
Vol. 3, Issue 1, pp: (125-133), Month: April 2015 - September 2015, Available at: www.researchpublish.com 

 

Page | 126 
Research Publish Journals 

 

wind velocity. It is observed that in the third order analysis the maximum growth rate of instability increases steadily with 

the increase of wave steepness. The growth rate is found to be appreciably much higher for dimensionless wind velocity 

approaching its critical value. The wave number at marginal stability has also been plotted against wave steepness for 

some different values of dimensionless wind velocity. 

II.   BASIC EQUATIONS 

The common horizontal interface between water and air in the undisturbed state as z=0 plane. In the undisturbed state air 

flows over water with a velocity  u in a direction that is taken as the x- axis. We take ( , , )z x y t   as the equation of 

the common interface is at any time t in the perturbed state. We introduce the dimensional quantities  

, , , ( , , ), , ,x y t t v    and s which are respectively, the perturbed velocity potential in water, perturbed velocity 

potential in air, surface elevation of the water-air interface, space coordinates, time, air flow velocity, the ratio of the 

densities of air to water and surface tension.     

These dimensionless quantities are related to the corresponding dimensional quantities by the following relations 

                                 

   3 3

0 0 0 0 0

2

0 0 0

/ , / , , , , , ,

, , / , , / ,

k g k g x y z k x k y k z

k t t v k g v s Tk g

   


   



   



     
               

Where 0k  is some characteristic wave number, g  is the acceleration due to gravity,   and   are the densities of water 

and air respectively and T  is the dimension surface tension. 

In the future, all the quantities will be written in their dimensionless form with their over ( ~ ) dropped. 

The perturbed velocity potentials   and  satisfy the following Laplace equations 

      
2 0              in      z                                                                                                   (2) 

       
2 0             in       z                                                                                                  (3) 

   The kinematic boundary conditions to be satisfied at the interface are the following 
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The condition of continuity of pressure at the interface gives            
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                                                                                                              When    z                           (6) 

Also     and  should satisfy the following conditions at infinity 

         0
z





           When        z                                                                                               (7) 

        0
z





          When         z                                                                                                  (8)  

We look for solutions of the above equations (2) and (8)in the following form 

*

00 1 2 1 2

0 0

[ exp ( ) exp ( )]mn mn

m n

P P P i m n P i m n   
 

 
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Where     1 1 1 1,k x t k x t           and   G  stands for    ,     .  In the above  summation on the right 

hand side of equation (9),  ( , ) (0,0)m n  .  The Fourier coefficients 
* *

00, 00, , , ,mn mn mn mn        are functions of 

1 1, ,z x x t t    and 
*

00, , ,mn mn    are functions of 1 1 1,x y t .    is a small ordering  parameter measuring the 

weakness of wave steepness , which is the product of wave amplitude and wave number and  * denotes complex 

conjugate. 

   The linear dispersion relation for gravity waves 

2 2(1 ) 2 (1 ) 0v v s                                                                                                   (10) 

Which gives the following two values of         

     2 21 1 / 1v v s     
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Which corresponds  to two modes and we designate this two modes as positive and negative modes. The positive mode 

moves in the positive direction of the x- axis with a frequency    2 21 1 / 1v v s    
 
 
 

      , while 

the negative mode moves in the negative direction of the x -axis with a frequency     

   2 21 1 / 1v s v          
 

. If  v   is replace by v  the frequency of the   positive mode becomes equal to the 

frequency of the negative mode. So the results for the negative mode can be obtained from those for the positive mode by 

replacing v  by v . Therefore we have made a nonlinear analysis for the positive mode, and then we have obtained the 

results for the negative mode by replacing v  by v . 

  For linear stability  should satisfy the following condition 

                                                                                                       12) 

So our present analysis will remain valid as long as the dimensionless flow velocity of the air becomes less than the 

critical velocity .   For air flowing over water   = 0.00129 and this critical value 

becomes 28.87, for s = 0.075. 

v
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III.      DERIVATION OF EVOLUTION EQUATIONS 

Substituting expansions (9) in equations (2),(3),(7),(8) and then equating the coefficients of 1 2exp ( )i m n   for 

(m,n)=[(1,0),(0,1),(2,0),(0,2),(1,1),(-1,1)] 

 We obtain the following equations: 

2
2

2
0mn mn

z
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                                                                                                               (13) 
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Where mn  is the operator given by 

2
2

2 2
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1 1

( )mn m n i
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 
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                                                                                       (17) 

The solutions of equations (13) and (14) satisfying boundary conditions (15) and(16) respectively  are given by 

exp( )mn mn mnz A  
                                                                                                                 (18) 

exp( )mn mn mnz A                                                                                                                  (19) 

In which ,mn mnA A are functions of 1 1,x y and 1t . For the sake of convenience we take the Fourier transformation of 

equations (2),(3),(7) and (8) for (m,n)=(0,0). The solutions of these transformed equations becomes  

00 00exp(| | )k z A                                                                                                                     (20) 

00 00exp(| | )k z A                                                                                                                      (21) 

Where 00  and 00  are Fourier transforms of 00  and 00  respectively, defined by 

00 00 00 00 1 1 1 1 1 1( , ) ( , ) exp ( )x yi k x k y t dx dy dt    
  

  
                                              (22) 

Where 
2 2 2( ),x yk k k 

00A  and 
00A  are functions of xk  and yk  and  . 

Again  substituting expansions (9) in the Taylor expanded forms of  equations (4)-(6) about z=0 and then equating the 

coefficients of  1 2exp ( )i m n   for (m,n)=[(1,0),(0,1),(2,0),(0,2),(1,1),(-1,1),(0,0)] on both sides , we get the 

following equations 
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Where   0z implies the value of the quantity inside brackets at z = 0 and , ,a b cmn mn mn  are contributions from 

nonlinear terms. Now for the above seven values of (m,n), we obtain seven sets of equations,in which we substitute the 

solutions for ,mn mn   given by (18)-(21).  We now considering the following perturbation expansions for the 

solutions of above three sets of equations 

1

i iF Fmn mn
i




 


  for (m,n)=[(1,0),(0,1)] ; 

1

i iF Fmn mn
i




 


 for (m,n)=[(2,0),(0,2),(1,1),(-1,1),(0,0)]  

                                                                                                                                                                                          (26)                                                                                                                

Where mnF  stands for ,A Amn mn  and mn  .  

Substituting expansions (26) in the above three sets of equations and then equating coefficients of various powers of  on 

both sides,we obtain a sequence of equations. From the first order (i.e lowest order) and second order equations 

corresponding to (23) and (24) of the first set of equations we obtain solutions for ,A Amn mn  and mn  ;  (m,n)= 

)=[(1,0),(0,1), (2,0),(0,2),(1,1),(-1,1),(0,0)].We now take the following transformations, following Pierce and Knobloch 

[14]of all perturbed quantities in slow space coordinates and time given by  

2

1 1 1 1 1 1, , ,g gx c t x c t y t          
 Where 

1
g

dw

dk k

c


 
  
 

is the group velocity.  

Now arranging different terms of we obtain the third order nonlinear evolution equation for 10 : 

(1) (1) (1)2 2
(1) (1) (1) (1)2 210 10 10 | | | |

1 2 1 10 10 2 10 102 2
1

  
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  

  
   

  


                            (27)                                                          

Again we  get the third order  nonlinear evolution equation for 01 :

  (1) (2) (1)2 2
(1) (1) (1) (1)2 201 01 01 | | | |

1 2 1 01 01 2 01 012 2
1

  
       

  

  
    
  

                       (28)                                                

If we put 0, 0v    in equation (27) and (28) then we get nonlocal mean field evolution equations in the third order 

for infinite depth water. These reduce equations becomes the same as equations (2) of Janssen [6]  
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IV.    STABILITY ANALYSIS 

The uniform wave train solutions of equations (27 ) and (28) are given by 

   

(0) (0)
exp( ), exp( ),

10 10 0 01 01 0
i i                                                      (29)                                    

Where 0  is real constant and the nonlinear frequency shift   is given by    

  

2( )
1 2 0

                                                                                                                                   (30) 

Finally we obtain the following nonlinear dispersion relation 

 
  

1
2 2 2 22

1 1 1 0
                                                                                                              (31)                                                                                               

From the relation (31) we observe that instability occurs when 1 1 0    for long wave length that is for 0 .    when 

instability condition is fulfilled, the growth rate of instability 

1
2 2 2 2[ ( 2 )]

1 1 1 0
                                                                                                                 (32) 

For 
2 2 /

1 0 1
      , the maximum growth rate of instability 

     
2| |

1 0m          (33)                                                                                                  At marginal stability     

     

2 22 0
1 2 0
      

And the wave number 

       

2
1 0

| |
1 1

 


 
                                                                                                                                         (34)       

In Figures 1 and 2 the maximum growth rate Γm of instability which can be obtained from equation (33) has been plotted 

against wave steepness 0  for some different values of dimensionless wind velocity v and for s=0.075. From these 

graphs it is found that for waves with sufficiently small waves numbers the maximum growth rate of instability Γm 

increases steadily with the increase of wave steepness 0 . The maximum growth rate also increases with the increase of 

dimensionless wind velocity v . The growth rate is found to be appreciably much higher for dimensionless wind velocity 

approaching its critical value. 

Again in Figures 3 and 4 the wave number   at marginal stability which can be obtained from equation (34) has been 

plotted against wave steepness 0 for some different values of dimensionless wind velocity v. From these graphs it is 

observed that the instability regions are shortened with the increase of the absolute value of the wind velocity. 
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Figure 1: Maximum growth rate of instability m  against wave steepness 0  for some different values of dimensionless wind 

velocity v. Here   = 0.00129 and  s = 0.075 for all the graphs except for the one with s = v = γ = 0 written on the graph. 

 

Figure 2: Maximum growth rate of instability m  against wave steepness  0  for some different values of dimensionless 

wind velocity v. Here   = 0.00129. And s = 0.075 for all the graphs 

 

Figure 3:  Wave number   at marginal stability against wave steepness 0  for some different values of dimensionless wind 

velocity v. Here    = 0.00129 and s = 0.075 for all the graphs except for the one with s = v =   = 0 written on the graph. 
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Figure 4: Wave number   at marginal stability against wave steepness 0  for some different values of dimensionless wind 

velocity v. Here   = 0.00129 and  s = 0.075 for all the graphs. 

V.    DISCUSSION AND CONCLUSION 

The third order nonlinear evolution equations have been derived by Pierce and Knobloch [9] for two counterpropagating 

capillary gravity wave packets on the surface of water of finite depth. The resulting equations are asymptotically exact 

and nonlocal and generalize the equations derived by Djordjevic and Redekopp [5] for counterpropagating waves. Our 

paper is an extension of the evolution equations derived by Pierce and knobloch [9] for an infinite depth water and in the 

presence of wind flowing over it. From these evolution equations instability condition is obtained and graphs are plotted 

showing maximum growth rate of instability Γm against wave steepness 0  for some different values of dimensionless 

wind velocity v. From the graphs it is found that the maximum growth rate of instability Γm increases steadily with the 

increase of wave steepness 0 . 

The maximum growth rate also increases with the increase of dimensionless wind velocity v. The growth rate of 

instability is found to be appreciably much higher for dimensionless wind velocity approaching its critical value. Graphs 

are also plotted for the wave number   at marginal stability against wave steepness 0  for some different values of 

dimensionless wind velocity v. From the graphs it is observed that the instability regions are shortened with the increase 

of the absolute value of the wind velocity. 
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APPENDIX – A 

Coefficients of the Evolution Equations (27) and (28):  

   
   
   

2 22 2 (1 ) 3 / (1 ) ,
0

2 2 22 (1 ) 3 / 2(1 ) 2 ,
1

2 2(1 ) 2 3 / 4(1 ) 4 ,
2

214 2 2 2 2[(2 6 9 ) { ( ) 2(2 )( )( 2 )
1 12

2 4(1 2 ) 15 } ( )(6 9)] /[12 8
1 1

v v s v

vc v c s vg g

c vc s vg g

s v p v v

p v v v p
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       

      

       

     

      

      

     

         
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Nomenclature: 

( 0,1,2)

( 1,2)

i
i

i
i













- coefficients given in the Appendix, 

  - Slowness parameter,  - wave steepness,   - elevation of the air water interface,  -   frequency,   - Ratio of 

densities of air to water,   - frequency shift,    - perturbed frequency at marginal stability.
 
g – Acceleration due to 

gravity, - wave  number, s  – dimensionless surface tension, t –  time, v - air flow velocity, m    - growth rate of 

instability   .  

 


